Capítulo 2 Questões teóricas:

- 1. Defina experiência aleatória. Dê exemplos de experiências aleatórias associadas a espaços de resultados discreto finito, discreto mas infinidade numerável e contínuo.
- Defina espaço de resultados de uma experiência aleatória. Dê um exemplo de uma experiência aleatória e defina o espaço de resultados associado. Classifique-o.
- Um espaço de resultados discreto é sempre finito? Comente com apoio de exemplos.
- 4. Defina espaço de resultados contínuo. Dê dois exemplos de experiências aleatórias cujo espaço de resultados seja contínuo.
- Considere a experiência aleatória retirada de uma carta de um baralho até sair uma carta de espadas. Defina o espaço de resultados associado a esta experiência e classifique-o.
- Considere o lançamento de duas moedas equilibradas. Qual o espaço de resultados desta experiência aleatória? Classifique o espaço de resultados. Justifique.
- 7. Defina medida de probabilidade e comente a sua utilidade.
- 8. Quais os axiomas verificados pela medida de probabilidade P(A)?
- 9. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que P[acontecimento "impossível"] = 0. Use um diagrama de Venn para o ajudar a pensar.
- 10. Utilizando os axiomas da medida de probabilidade demonstre que $P(A) \le 1$. Use um diagrama de Venn para o ajudar a pensar.
- 11. Utilizando os axiomas da medida de probabilidade demonstre que $P(\bar{A}) = 1 P(A)$. Use um diagrama de Venn para o ajudar a pensar.

- 12. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que $P[(A \cap B) \cup (A \cap \overline{B})] = P(A)$. Use um diagrama de Venn para o ajudar a pensar.
- 13. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que $P(B-A)=P(B)-P(B\cap A)$. Use um diagrama de Venn para o ajudar a pensar.
- 14. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que $P(A \cup B) \leq P(A) + P(B)$. Use um diagrama de Venn para o ajudar a pensar.

[Sugestão: tenha em consideração que $A \cup B = A \cup (B - A)$]

15. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Use um diagrama de Venn para o ajudar a pensar.

[Sugestão: tenha em consideração que $A \cup B = A \cup (B - A)$]

- 16. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que $P(B \cap \bar{A}) = P(B) P(A \cap B)$ Use um diagrama de Venn para o ajudar a pensar.
- 17. Sejam $A,B\in \mathcal{C}$ acontecimentos de Ω com probabilidade positiva. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que $P(A\cap B\cap \bar{\mathcal{C}})=P(A\cap B)-P(A\cap B\cap \mathcal{C})$ Use um diagrama de Venn para o ajudar a pensar. [Sugestão: tenha em consideração que $A\cap B=A\cap B\cap \Omega$ e $\mathcal{C}\cup \bar{\mathcal{C}}=\Omega$]
- 18. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que se A e B são acontecimentos mutuamente exclusivos $P(\bar{A} \cup \bar{B}) = 1 P(A \cap B)$. Use um diagrama de Venn para o ajudar a pensar. [Sugestão: tenha em consideração as leis de De Morgan]

- 19. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que se A e B são acontecimentos mutuamente exclusivos $P(\bar{A} \cap \bar{B}) = 1 P(A) P(B)$. Use um diagrama de Venn para o ajudar a pensar. [Sugestão: tenha em consideração as leis de De Morgan]
- 20. Sejam A e B, acontecimentos de um espaço de resultados com probabilidade positiva. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que $P(A) \leq P(B)$. Use um diagrama de Venn para apoiar a sua resposta.
- 21. Utilizando os axiomas e propriedades da medida de probabilidade demonstre que $P[(A \cap B) \cup (A \cap \overline{B})] = P(A)$
- 22. Use um diagrama de Venn para demonstrar que $(A \cap B) \cup (A \cap \overline{B}) = A$. Calcule $P[(A \cap B) \cup (A \cap \overline{B})]$ usando os axiomas e propriedades da medida de probabilidade.
- 23. Descreva o problema que o esquema binomial permite resolver e as condições em que é aplicável? Se necessário, utilize um esquema para apoiar a sua descrição.
- 24. Descreva o problema que o esquema hipergeométrico permite resolver e as condições em que é aplicável? Se necessário, utilize um esquema para apoiar a sua descrição
- 25. Sejam A e B, acontecimentos incompatíveis de um espaço de resultados com probabilidade positiva. Mostre, justificando com os axiomas e propriedades da medida de probabilidade a que é igual a $P(A \cup B)$. [Sugestão: faça $A \cup B = A \cup (B A)$].
- 26. Sejam A e B, acontecimentos de um espaço de resultados com probabilidade positiva. Se $A \subset B$, mostre, justificando devidamente, todos os passos a que é igual a $P(A \cup B)$.
- 27. Defina P_n e explique como chega à respectiva fórmula de cálculo . Dê um exemplo de um problema para a resolução do qual necessite de usar este método de contagem.

- 28. Para escolher o método de contagem adequado a uma dada experiência aleatória que tipo de informação é necessário ter em consideração?
- 29. Em que condições se tem de recorrer à interpretação subjectiva da probabilidade? Dê um exemplo em que tal aconteça.
- 30. Em que condições se pode aplicar o conceito clássico de probabilidade?
- 31. Quais as principais criticas feitas ao conceito clássico de probabilidade?
- 32. Considere a experiência aleatória lançamento de um dado. Como é que a interpretação frequencista da probabilidade atribui probabilidade ao acontecimento saída de face com 4 pontos?
- 33. Se se lançar um dado 10 vezes e não sair nenhum 6 pode concluir-se que o dado não é equilibrado. Comente. Indique qual a interpretação do conceito de probabilidade que fundamenta a sua resposta.
- 34. Se se lançar um dado 10000 vezes e não sair nenhum 6 pode concluir-se que o dado não é equilibrado. Comente. Indique qual a interpretação do conceito de probabilidade que fundamenta a sua resposta.
- 35. conceito frequencista de probabilidade ultrapassou as críticas feitas ao conceito clássico de probabilidade.
- 36. Supondo que um acontecimento B se realiza e que A e B são independentes, prove que P(A|B) = P(A)? Justifique todos os passos.
- 37. Prove que o axioma 1 da medida de probabilidade é satisfeito pela probabilidade condicionada, isto é, que se $P(B) \neq 0$, então $P(A|B) \geq 0$. Justifique todos os passos.
- 38. Prove que o axioma 2 da medida de probabilidade é satisfeito pela probabilidade condicionada, isto é, que se $P(B) \neq 0$, então P(B|B) = 1. Justifique todos os passos.

- 39. Prove que o axioma 3 da medida de probabilidade é satisfeito pela probabilidade condicionada, isto é, que se $P(B) \neq 0$ e A_1 , A_2 são acontecimentos mutuamente incompatíveis então $P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_1 \mid B)$. Justifique todos os passos.
- 40. Dados 3 acontecimentos $A, B, C \subset \Omega$, tais que $P(A \cap B \cap C) \neq 0$ e $P(C|A \cap B) = P(C|B)$, mostre que $P(A|B \cap C) = P(A|B)$. Justifique todos os passos.
- 41. Dados 2 acontecimentos $A, B \subset \Omega$, tais que $P(B \setminus A) = P(A)$, mostre que P(A|B) = P(A). Justifique todos os passos.
- 42. Dados 3 acontecimentos independentes $A, B, C \subset \Omega$, mostre que $A \in B \cap C$ também são independentes. Justifique todos os passos.
- 43. Dados 3 acontecimentos independentes $A, B, C \subset \Omega$, mostre que $A \in B \cup C$ também são independentes. Justifique todos os passos.
- 44. Se A_1 , A_2 , A_3 são acontecimentos mutuamente incompatíveis e tais que $A_1 \cup A_2 \cup A_3 = \Omega$ e o acontecimento C é tal que $C \cap A_i \neq \emptyset$ i=1,2,3. Demonstre o teorema de probabilidade total do acontecimento C. Justifique todos os passos
- 45. Se A_1 , A_2 , A_3 são acontecimentos mutuamente incompatíveis e tais que $A_1 \cup A_2 \cup A_3 = \Omega$ e o acontecimento C é tal que $C \cap A_1 \neq \emptyset$ e $C \cap A_i = \emptyset$ i = 2,3. Determine a expressão de cálculo da probabilidade do acontecimento C. Justifique todos os passos.
- 46. Sejam A e B, acontecimentos de um espaço de resultados, tais que P(A) = 0.6, P(B) = 0.4 e $P(A \cap B) = 0.1$. O que pode concluir acerca da independência entre A e B? Justifique devidamente.
- 47. Se P(A)=0.55, P(B)=0.45, P(A-B)=0.25 então A e B constituem uma partição do espaço de resultados. Comente a afirmação, justificando devidamente.

- 48. Se P(A)=0.55, P(B)=0.45, P(A-B)=0.55 então A e B constituem uma partição do espaço de resultados. Comente a afirmação, justificando devidamente.
- 49. Sejam A_1, A_2, A_3 acontecimentos de um espaço de resultados Ω , com probabilidade positiva. Se $A_1 \subset A_2 \subset A_3$, A_1, A_2, A_3 podem constituir uma partição do espaço de resultados? Justifique devidamente.
- 50. Mostre, justificando todos os passos, que se A é um acontecimento de um espaço de resultados com probabilidade positiva, A e \bar{A} constituem uma partição do espaço de resultados.
- 51. Dois acontecimentos incompatíveis podem ser independentes. Comente justificadamente.
- 52. Sejam A_1, A_2 acontecimentos de um espaço de resultados Ω , com probabilidade positiva. Se $A_1 \subset A_2$, usando a definição de acontecimentos independentes, mostre que A_1, A_2 não podem ser independentes.
- 53. Demonstre que, no contexto do teorema de Bayes, a soma das probabilidades condicionadas de cada um dos elementos da partição do espaço de resultados $A_{j\ (j=1,2,3)}$ pelo acontecimento B é sempre igual a 1. Utilize um diagrama de Venn para apoiar a sua explicação.
- 54. Mostre que o espaço de resultados Ω é independente de qualquer outro acontecimento $A \subset \Omega$.
- 55. Mostre que o acontecimento "impossível" é independente de qualquer outro acontecimento $A \subset \Omega$.